烯類到醇類的轉換-環己醇的製備

一、實驗目的:

醇很容易轉變為鹵烷、烯、醚、醛、酮、酸、酯等化合物,所以 醇類化合物在有機合成上應用極為廣泛,不但可以用作溶劑,而且可 以用於製備其它的化合物的原料。本實驗是利用烯類在酸催化下加水 形成醇類的方式來製備醇。

二、實驗方程式:

$$+ H_2O$$
 H^+

反應機構:

三、實驗原理:

1、製備醇類的方法有很多種:

工業上:澱粉發酵和石油裂解中烯烴的催化加水等。

實驗室:①以烯烴為起始物,所進行的碳碳雙鍵加成反應。

②以羰基化合物為起始物的碳氧鍵的加成和羰基的還原。

2、烯類合成醇類的方法:

(1) 酸催化水合反應(Acid-Catalyzed Hydration)

$$C=C$$
 + H_2O H^+ C

- ①烯類在酸中先質子化(protonation)以形成穩定的碳陽離子(carboncation),水再接上碳陽離子,然後再脫去氫離子。
- ②遵循"馬可尼可夫規則:氫加在比較多氫的碳上,以形成較穩定的碳陽離子",進行反應。
 - ③為醇類酸催化脫水的逆反應。
 - ④在稀酸中以較低溫進行反應。
- (2) 烯類的氫硼化—氧化反應(Hydroboration-Oxidation of Alkene)

$$C = C + B_2H_6 \longrightarrow -C - C - C \xrightarrow{H_2O_2} -C - C - C \xrightarrow{H_2O_3} -C - C - C \xrightarrow{H_2O_4}$$

- ①所產生的醇有較低的產率。
- ②具高度位置選擇性。
- ③反馬可尼可夫規則。(Anti-Markovonkov's rule)
- (3) 氧汞化-去汞化反應 (Oxymercuration-demercuration)

- ①所產生的醇有較高的產率。
- ②具高度位置選擇性。
- ③遵循馬可尼可夫規則。(Markovonkov's rule)
- (4) 烯類的順式烴基化 (Syn Hydroxylation of Alkenes)

$$C = C \left(\begin{array}{c} \frac{\text{KMnO}_4}{\text{OH}} & -\frac{1}{\text{C}} - \frac{1}{\text{C}} \\ -\frac{1}{\text{OH}} - \frac{1}{\text{OH}} - \frac{1}{\text$$

3、實驗:由環己烯合成出環己醇

①環己烯在酸催化下,先質子化形成環己基陽離子(cyclohexyl

cation) •

- ②碳陽離子再和硫酸氫根(HSO₄)和水反應。
- ③當濃硫酸和水反應時會放出大量的熱,故在環己烯加入之前, 要先將溶液冰浴冷卻,避免環己烯蒸發。
- ④環己烯不溶於酸的水溶液中,然而質子化的醇和硫酸環己氫可溶於水,故當最初**兩相混合變成一相**時,反應完成。
- ⑤乾燥劑選擇無水碳酸鈉,因其會中和所存在的少量酸,若在最後的蒸餾裡,微量的酸存在將會造成環己醇的脫水。

四、實驗步驟:

取一個 50 毫升的圓底燒瓶 (蓋上瓶口,先檢驗是否漏水)

在冰浴的清況下,加入 1.7 毫升蒸餾水,且緩緩滴入 3.5 毫升硫酸(使 其均匀混合)

緩慢滴入4.1克(5毫升)環己烯

 \downarrow

蓋上圓底燒瓶蓋子,開始劇烈搖晃(直到原本兩層變成一層)

 \downarrow

將溶液倒入 100 毫升圓底燒瓶,並用 25 毫升的水清洗原來的圓底燒瓶,並將清洗液倒入 100 毫升圓底燒瓶

 \downarrow

進行簡易蒸餾,收集約20毫升的蒸餾液,且將蒸餾液置入分液漏斗內

 \downarrow

加入 10 毫升飽和食鹽水、1 克碳酸鈉 (先溶在食鹽水中) 及 5 毫升 乙醚進行萃取 \downarrow

收集有機層(水層倒入"水層收集瓶",待實驗結束後可用水稀釋後倒入水槽)

 \downarrow

加入無水硫酸鎂去水,以棉花過濾

 \downarrow

濃縮,去除乙醚

 \downarrow

簡易蒸餾(產物收集瓶先烘乾、稱重)

 \downarrow

收集溫度範圍(bp=155~160℃)的蒸餾液,非產物之蒸餾液及圓底瓶內殘留液必須倒入"不含鹵素有機廢液桶"

 \downarrow

秤重計算產率

五、儀器裝置:

蒸餾裝置、分液漏斗、量筒及燒杯等

六、藥品性質:

Cyclohexene	存在於煤焦油中,無色液體,比重 0.81,沸點
環己烯	83℃,不溶於水,與乙醇、乙酸乙酯、氯仿、苯、
C_6H_{10}	石油醚及四氯化碳等溶劑。工業上由環己醇在酸
	催化存在下經高溫脫水製得,實驗室中由環己醇
	經硫酸脫水製得。重要的化工原料,可用作萃取
	劑,具有高辛烷值氣油的穩定劑。吸入會引起輕
	度中毒。
Ethyl Ether	一般比較穩定,不與水、氧化劑、還原劑、鹼或

乙醚	烯酸起反應,但濃而熱的強酸會導致醚鍵的斷
$C_2H_5OC_2H_5$	裂。其中乙醚是最重要的代表物。密度 0.71、沸
	點 34.6°C。
Sulfuric Acid	純粹的無水硫酸為無色無臭的油狀液體;不純物
硫酸	則成黃色或棕色。沸點 338℃,能與許多金屬反
H_2SO_4	應,濃硫酸有強烈的吸水性及脫水性,常用做化
	學試劑和用於製造肥料,並廣泛應用於淨化石油
	以及染料等工業中。
Sodium Chloride	食鹽的主要成份,無色立方結晶或白色粉末,呈
氯化鈉	鹹味,熔點 801℃。通常含氯化鎂等雜質,易潮
NaCl	解,溫度對它的溶解度影響很小,難溶於乙醇。
	未高度精製的食鹽可供食用,精製後用以製備氣
	氣、金屬鈉、燒鹼等化工原料。生理上,氯化鈉
	是維持體內滲透壓平衡的主要鹽分,即所謂的生
	理食鹽水。

七、注意事項:

- 實驗前須先確定圓底燒瓶與瓶蓋密合,若不密合在經過劇烈搖晃 後瓶內濃硫酸會溢出。
- 2、若圓底燒瓶與瓶蓋無法密合,則改用分液漏斗。
- 3、搖晃過程務必戴上保護手套。
- 4、環己烯屬於極易燃物,必須小心處理遠離火源。

八、實驗問題:

- 1、試說明為何環己醇較容易溶於硫酸而不溶於其他稀酸?
- 2、試寫出環己烯聚合物(環己基陽離子)的反應方程式?
- 3、本實驗中為何不使用氯化鈣來當乾燥劑?

烯類到醇類的轉換—環己醇的製備 實 驗 報 告

數據及結果:

反應物名稱	結構式	分子量	用量	莫耳數
環己烯				
硫酸				
水				

產物	結構式	分子量	理論莫耳數	理論值
環己醇	顏色	沸點	比重	實際值

*產率=實際值÷理論值×100% =	*	產率=	實際值	÷理論值×100%	=	%
--------------------	---	-----	-----	-----------	---	---

*雨相混合變成一相時,搖晃時間為:_____